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A new method for the approximate numerical integration of the radial Schrödinger equa-
tion is developed in this paper. Phase-lag and stability analysis of the new method is
included. The new method is called the embedded method because of a simple natural error
control mechanism. Numerical results obtained for the phase-shift problem of the radial
Schrödinger equation show the validity of the developed theory.

1. Introduction

There has been a great activity in the last decade for the numerical solution of the
radial Schrödinger equation (see [1] and references therein). The aim of this activity is
the construction of an efficient and reliable algorithm that approximates the solution.

The radial Schrödinger equation can be written as

y′′(r) =

[
l(l + 1)
r2 + V (r)− k2

]
y(r). (1)

Differential equations of the above type occur very frequently in many problems in
theoretical physics and chemistry, in chemical physics, in physical chemistry, in as-
trophysics, in electronics and elsewere (see, for example, [9]). For the above reason
the construction of an efficient and reliable numerical method is needed. In (1) the
function W (r) = l(l + 1)/r2 + V (r) denotes the effective potential, which satisfies
W (r) → 0 as r → ∞, k2 is a real number denoting the energy, l is a given integer
and V is a given function which denotes the potential. The boundary conditions are

y(0) = 0 (2)

and a second boundary condition, for large values of r, determined by physical con-
siderations.
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In [2,14] an explanation about the inefficiency of boundary and initial value
methods is given.

One of the most popular and well known methods for the numerical solution of (1)
is Numerov’s method. The reason is that while the Numerov’s method is of order four,
it has a phase-lag of order four (i.e., of the same order as the linear symmetric four-step
sixth algebraic order methods) and much more larger interval of periodicity than the
linear symmetric four-step methods. High-order numerical methods for the eigenvalue
problem of the radial Schrödinger equation have been developed for some special
potentials V (x) which are even functions (see, for example, [6,7]).

The Runge–Kutta type or hybrid methods is an alternative approach for deriv-
ing higher-order methods. This type of methods has been proposed by Cash and
Raptis [4].

Another approach for developing efficient methods for the numerical solution
of (1) is exponential fitting (see [17] and references therein). This approach is appro-
priate because for large values of r and positive k2 the solution of (1) is periodic.

In [1] Avdelas and Simos have proposed a new approach for solving the
Schrödinger type equations via simple fourth and sixth algebraic embedded pairs with
a simple error control mechanism.

In section 2 the theory of the phase-lag analysis of symmetric two-step methods is
developed. A family of eight algebraic order explicit methods is proposed in section 3
and their complete phase-lag and stability analysis is developed. In section 4 a simple
error control mechanism, based on the phase-lag error, is described. An application of
the proposed methods to the radial Schrödinger equation is presented in section 5, to
show the efficiency of the new methods.

2. Phase-lag analysis

In the last decade there has been a great interest in the numerical solution of
special second order periodic initial-value problems (see [5] and references therein):

y′′ = f (x, y), y(x0) = y0, y′(x0) = y′0. (3)

In order to investigate the periodic stability properties of numerical methods for
solving the initial-value problem (3) Lambert and Watson [8] introduce the scalar test
equation

y′′ = −w2y (4)

and the interval of periodicity.
Based on the theory developed in [8], when a symmetric two-step method is

applied to the scalar test equation (4), a difference equation of the form

yn+1 − 2C(H)yn + yn−1 = 0 (5)
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is obtained, where H = wh, h is the step length, C(H) = B(H)/A(H), A(H)
and B(H) are polynomials in H and yn is the computed approximation to y(nh),
n = 0, 1, 2, . . . .

The characteristic equation associated with (5) is

s2 − 2C(H)s+ 1 = 0. (6)

A very important insight for the construction of the numerical methods for the
above described problems has been developed by Brusa and Nigro [3], where they
introduced the property of the frequency distortion as an important characteristic of a
method for solving special second order initial-value problems. For frequency distor-
tion other authors (see [5] and references therein) use the terms phase-lag, phase error
or dispersion. From now on we use the term phase-lag.

A significant number of methods with minimal phase-lag have been developed
in the last decade (see [1] and references therein).

Based on Coleman [5] when a symmetric two-step method is applied to the scalar
test equation y′′ = −w2y, a difference equation (5) is obtained. The characteristic
equation associated with (5) is given by (6). The roots of the characteristic equation (6)
are denoted as s1 and s2.

We have the following definitions.

Definition 1 [16,18]. The method (5) is defined as unconditionally stable if |s1| 6 1
and |s2| 6 1 for all values of wh.

Definition 2. Following Lambert and Watson [8] we say that the numerical method (5)
has an interval of periodicity (0,H2

0 ), if, for all H2 ∈ (0,H2
0 ), s1 and s2 satisfy

s1 = eiθ(H) and s2 = e−iθ(H), (7)

where θ(H) is a real function of H .

Definition 3. For any method corresponding to the characteristic equation (6) the
phase-lag is defined as the leading term in the expansion of

t = H − θ(H) = H − cos−1[C(H)
]
. (8)

If the quantity t = O(Hq+1) as H → 0, the order of phase-lag is q.

Definition 4 [8]. The method (5) is P-stable if its interval of periodicity is (0,∞).

And we have the following theorems:

Theorem 1. A method which has the characteristic equation (6), has an interval of
periodicity (0,H2

0 ), if for all H2 ∈ (0,H2
0 ) |C(H)| < 1.

For the proof, see [15].
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Theorem 2. About the method which has an interval of periodicity (0,H2
0 ) we can

write

cos
[
θ(H)

]
= C(H), where H2 ∈

(
0,H2

0

)
. (9)

For the proof, see [15].
Based on the above Coleman [5] has arrived at the following remark.

Remark 1. If the phase-lag order is q = 2r then we have

t = cH2r+1 + O
(
H2r+3)

⇒ cos(H)− C(H) = cos(H)− cos(H − t) = cH2r+2 + O
(
H2r+4). (10)

3. The new embedded methods

In this section we will develop a group of families of methods of algebraic order
eight with minimal phase-lag. We note that these methods have a natural error-control
mechanism. In order to explain the term “embedded” we mention the following. We
denote the family of this group with phase-lag of order p as family b and the next
family with phase-lag of order p+ 2 as family b+ 1. So we can use, as in embedded
Runge–Kutta methods, the family b + 1 to estimate the error of the phase-lag of the
family b; for this reason these methods can be called embedded.

3.1. The new embedded eighth algebraic order method

We consider the following family of explicit methods:

yn+1 = 2yn − yn−1 + h2y′′n, (11)

yn,k,b = yn − ab−kh2[y ′′n+1 − 2y ′′n,k−1,b + y′′n−1

]
, k = 1(1)b, (12)

yn+1 = 2yn − yn−1 +
h2

12

[
y ′′n+1 + 10y ′′n,b,b + y′′n−1

]
, (13)

yn+1/2 =
1

104

[
5yn+1 + 146yn − 47yn−1

]
+

h2

4992

[
−59y ′′n+1 + 1438y′′n + 253y′′n−1

]
, (14)

yn−1/2 =
1

52

[
3yn+1 + 20yn + 29yn−1

]
+

h2

4992

[
41y ′′n+1 − 682y′′n − 271y′′n−1

]
, (15)

ŷn+1 = 2yn − yn−1 +
h2

60

[
y
′′
n+1 + 26y′′n + y′′n−1 + 16

(
y ′′n+1/2 + y ′′n−1/2

)]
, (16)

ŷn+1/2 =
1

128

[
−25ŷn+1 + 205yn − 15yn−1 − 37yn−2

]
+

h2

1536

[
23ŷ ′′n+1 + 761y′′n + 509y′′n−1 + 27y′′n−2

]
, (17)
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ŷn−1/2 =
1

128

[
37ŷn+1 + 27yn + 27yn−1 + 37yn−2

]
+

h2

512

[
−9ŷ ′′n+1 − 171y′′n − 171y′′n−1 − 9y′′n−2

]
, (18)

ŷn+1/4 =
1

4096

[
605ŷn+1 + 4070yn − 579yn−1 − 160

(
ŷn+1/2 − ŷn−1/2

)]
− h2

49152

[
113ŷ ′′n+1 − 1390y′′n − 103y′′n−1 + 1944

(
ŷ ′′n+1/2 − ŷ ′′n−1/2

)]
, (19)

ŷn−1/4 =− 1
4096

[
579ŷn+1 − 4070yn − 605yn−1 − 160

(
ŷn+1/2 − ŷn−1/2

)]
+

h2

49152

[
103ŷ ′′n+1 + 1390y′′n − 113y′′n−1 + 1944

(
ŷ ′′n+1/2 − ŷ ′′n−1/2

)]
, (20)

yn+1 − 2yn + yn−1 =
h2

3780

[
47
(
ŷ ′′n+1 + y′′n−1

)
+ 1328

(
ŷ ′′n+1/2 + ŷ ′′n−1/2

)
− 1024

(
ŷ ′′n+1/4 + ŷ ′′n−1/4

)
+ 3078y′′n

]
, (21)

where

y′′n = f (xn, yn), y ′′n+1 = f
(
xn+1, yn+1

)
,

y ′′n±1/2 = f
(
xn+1/2, yn±1/2

)
, y ′′n,k−1,b = f

(
xn, yn,k−1,b

)
,

y
′′
n+1 = f

(
xn+1, yn+1

)
, ŷ ′′n+1 = f

(
xn+1, ŷn+1

)
,

ŷ ′′n±1/2 = f
(
xn+1, ŷn±1/2

)
, ŷ ′′n±1/4 = f

(
xn+1, ŷn±1/4

)
,

k is the number of the layer, b is the number of the family and yn,0,b = yn. We note
that ab−k, k = 1(1)b, are free parameters of the group of families which can be chosen
in order that some critical properties of a numerical method are satisfied. If we follow
the definition of a stage given by Coleman in [5], then we observe that in (11)–(21)
each of the couples of formulas (14)–(15), (17)–(18), (19)–(20) corresponds to a stage.
Also the formulae (12)–(13) correspond to a stage. Then one can easily see that in
each family, say b, the total number of stages N is given by

N = b+ 6. (22)

Applying the Taylor series expansions of yn+1, yn and yn−1 about xn in (11)–
(21) we have the following result for the local truncation error (L.T.E.) of the families
(11)–(21):

L.T.E.= h10
[
− 71

47174400
y(4)
n F

′
n −

15553
14631321600

y(8)
n Fn −

31
232243200

y(10)
n

− 1633
1415232000

y(6)
n F

2
n −

71
393120

aby
(4)
n F

′
n

]
, (23)

where Fn = ∂f/∂x, F ′n = dF/dx.
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We apply this group of families to the scalar test equation (4). Setting H = wh
we get a difference equation of the form (5).

Theorem 3. For the method given by (11)–(21) the polynomial C(H) in (5) is given
by

C(H) = 1− H2

2
+
H4

24
− H6

720
+

H8

40320
+

119H10

40435200
+

H12

29030400

+

(
H14

2903040
+

95H12

2830464
+

55H10

67392

)
∆b, (24)

where

∆b =
b−1∑
i=0

(
−2H2)i i∏

j=0

aj (25)

with ak, k = 0(1)b− 1, b = 1, 2, . . . , real numbers.

For the proof, see appendix A.
The characteristic equation associated with (5) is (6).
With the help of theorems 1 and 2, and remarks 1 and 2 of section 2 we have

the following theorem.

Theorem 4. For all explicit methods defined by (11)–(21) and for proper ak, k =
0(1)b− 1, b = 1, 2, . . . , the phase-lag is O(H2N ) = O(H2b+12).

Proof. From definition 2 and remark 1 of the previous section we can conclude that
the phase-lag of the family of methods (11)–(21) is given as the leading term in the
expansion of

S =
cos(H)− C(H)

H2 . (26)

If we substitute the series expansion of C(H) given by (24) and the Taylor series
expansion of cos(H) into (26) we have

S =

∑∞
N=5

[
(−1)N H2N

(2N )!

]
−
[(

55
67392 + 95H2

2830464 + H4

2903040

)
∆b − 119

40435200 −
H2

29030400

]
H10

H2

=−
[

911
283046400

+
31H2

958003200
+

H4

87178291200

+

(
55

67392
+

95H2

2830464
+

H4

2903040

)
∆b
]
H8 + O

(
H2b+12). (27)
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Then it is easy to find the values of coefficients ak, k = 1(1)b, b = 1, 2, . . . , from
the indentity (

55
67392

+
95H2

2830464
+

H4

2903040

)
∆b

≡ − 911
283046400

− 31H2

958003200
− H4

87178291200
, (28)

or from

∆b ≡ −
911

231000
+

5231H2

42688800
− 16709351H4

4930556400000
+ · · · , (29)

or from

b−1∑
i=0

(
−2H2)i i∏

j=0

aj ≡ s0 + s1H
2 + s2H

4 + · · · , (30)

where si, i = 0, 1, 2, . . . , are known coefficients of the polynomial of H of the second
part of (29).

Using (30) sequentially for b = 1, 2, . . . we can have the following algorithm to
find the coefficients of the method:

a0 = s0,

a1 =
s1

−2a0
= − s1

2s0
,

a2 =
s2

(−2)2a0a1
=

s2

(−2)2s0

−2s0

s1
=

s2

−2s1
,

and generally

ab =
sb

(−2)ba0a1 · · · ab−1
=

sb
(−2)bs0

−2s0

s1

−2s1

s2
· · · −2sb−2

sb−1
=

sb
−2sb−1

. (31)

Then, it is easy that for a specific value of b = 1, 2, . . . and for the correspond-
ing ak, k = 0(1)b − 1, which are given from relationships (31), the phase-lag of the
method (11)–(21) is O(H2N ) = O(H2b+12), where N = b+ 6. �

In order to find the intervals of periodicity of the family of methods (11)–(21)
under the condition to have minimal phase-lag of order O(H2N ) (i.e., for the coef-
ficients ai, i = 0(1)b, given by (31)) we can see from the theorem 1 that it must
be [1 + C(H)][1 − C(H)] > 0. By applying the polynomial C(H) given by (24)
to the above formula and following the proof of the theorem 2 and corollary of [5]
(see [5, pp. 149–150]), it can be seen that the intervals of periodicity for each family
of methods are given by table 1.
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Table 1
Interval of periodicity for the embedded eighth

order method. b is the number of the family.

b H2
0,b b H2

0,b

1 8.26 2 17.17
3 9.28 4 20.03
5 9.70 6 22.35
7 9.83 8 24.26
9 9.86 10 25.85

11 9.87 12 27.21
13 9.87 14 28.37
. . . . . . . . . . . .
29 9.87 30 33.91
. . . . . . . . . . . .
49 9.87 50 36.94
. . . . . . . . . . . .

4. Error estimation – local phase-lag error

The local truncation error (L.T.E.) for the integration of systems of initial-value
problems is estimated using several methods (see, for example, [12]).

The local error estimation technique in this work is based on an embedded pair
of integration methods and on the fact that when the phase-lag is minimal then the
approximation of the solution for the problems with an oscillatory or periodic solution
is better.

We have the following definition:

Definition 5. We define the local phase-lag error estimate in the lower order solution
yPLL
n+1 by the quantity

L.PL.E. =
∣∣yPLH
n+1 − yPLL

n+1

∣∣, (32)

where yPLH
n+1 is the solution obtained with higher phase-lag order method using the

family b + 1 and yPLL
n+1 is the solution obtained with lower phase-lag order method

using the family b.

Remark 2. Under the assumption that h is sufficiently small, the local phase-lag error
in yPLH

n+1 can be neglected compared with that in yPLL
n+1.

If the local phase-lag error of acc is requested and the step size of the integration
used for the nth step length is hn the estimated step size for the (n+ 1)st step, which
would give a local phase-lag error of acc, must be

hn+1 = hn

(
acc

L.PL.E.

)1/q

, (33)

where q is the order of the phase-lag.
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However, for ease of programming we have restricted all step changes to halving
and doubling. Thus, based on the procedure developed in [10] for the local truncation
error, the step control procedure which we have actually used is:

If L.PL.E. < acc, hn+1 = 2hn.
If 100 acc > L.PL.E. > acc, hn+1 = hn.

If L.PL.E. > 100 acc, hn+1 =
hn
2

and repeat the step.

(34)

We note, here, that the local phase-lag error estimate is in the lower order solution
yPLL
n+1. However, if this error estimate is acceptable, i.e., less than acc, we adopt

the widely used procedure of performing local extrapolation. Thus, although we are
actually controlling an estimate of the local error in the lower phase-lag order solution
yPLL
n+1, it is the higher order solution yPLH

n+1 which we actually accept at each point.
Now our procedure to estimate the local phase-lag error in yPLL

n+1 using the phase-
lag of yPLH

n+1 is clear. At every step we start with k = 1 and go on increasing k and
checking the local phase-lag error (L.PL.E.) until L.PL.E. is less than the bound acc
(1 6 k 6 b). If there is a k for which L.PL.E. < acc then the step size is doubled,
otherwise we carry out the integration. Moreover, when we applied our method to our
computer (i586 PC) we observed that, if the value of b was greater than 5, then (because
of the round off errors) the phase-lag became of higher order than the precision of the
computer used.

5. Numerical illustrations

In the present section we will illustrate the efficiency of the new proposed em-
bedded technique by applying it to a well known problem. We consider the numer-
ical integration of the radial Schrödinger equation (1) with one boundary condition
y(0) = 0, and a second boundary condition for large values of r determined by phys-
ical considerations. The form of the second boundary condition depends crucially on
the sign of k2. In the case where k2 > 0, then, in general, the potential function
V (r) dies away faster than the term l(l + 1)/r2, and equation (1) effectively reduces
to y′′(r) + (k2 − l(l + 1)/r2)y(r) = 0, for large r. The reduced equation has linearly
independent solutions krjl(kr) and krnl(kr), where jl(kr) and nl(kr) are the spherical
Bessel and Neumann functions, respectively. Thus, the solution of equation (1) has
the asymptotic form

y(r)∼=r→∞Akrjl(kr)−Bkrnl(kr)

∼=r→∞A

[
sin

(
kr − lπ

2

)
+ tan δl cos

(
kr − lπ

2

)]
,

where δl is the phase shift which may be calculated from the formula

tan δl =
y(r2)S(r1)− y(r1)S(r2)
y(r1)C(r2)− y(r2)C(r1)

(35)
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for r1 and r2 distinct points in the asymptotic region with S(r) = krjl(kr) and C(r) =
−krnl(kr).

We illustrate the performance of the new method derived in section 3 by applying
it to the solution of (1), where V (r) is the Lennard-Jones potential which has been
widely discussed in the literature. For this problem the potential V (r) is given by

V (r) = m

(
1
r12 −

1
r6

)
, where m = 500. (36)

We solve this problem as an initial value one and, in order to be able to use a
two-step method, we need an extra initial condition to be specified, e.g., y1 (=y(h)).
It is well known that, for values of r close to the origin, the solution of (1) behaves
like

y(r) ' Crl+1 as r → 0. (37)

In view of this we use y1 = hl+1 as our extra initial condition.
The problem we consider is the computation of the relevant phase shifts correct

to 6 decimal places. We will consider five approaches:

(1) based on the sixth algebraic order embedded method of Avdelas and Simos [1],

Figure 1. Method (1). Method (2). Method (3). Method (4).
Method (5).
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Figure 2. Method (1). Method (2). Method (3). Method (4).
Method (5).

(2) based on the variable step method of Simos [14],

(3) based on the variable step method of Simos and Mousadis [15],

(4) based on the generator of P-stable methods of Avdelas and Simos [2],

(5) based on the family of methods developed in section 3.

The procedures (1)–(4) are described in [1,14,15,2], respectively, and are used
without modification.

The method used in (5) is developed in section 3 and the error control procedure
is described in section 4.

In figures 1–3 we present the real time of computation of the phase shifts correct
to 6 decimal places. We note that, based on [10], the acc we take for the application
of the new methods is equal to 10−2M , where M is the number of required correct
decimal digits.

6. Conclusions

We have constructed a new family of methods with an embedded automatic error
control procedure. We note that for this family of methods we have proposed proce-
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Figure 3. Method (1). Method (2). Method (3). Method (4).
Method (5).

dures to define the parameters of the methods of the families such that the phase-lag
of the methods be minimal (until the phase-lag became of the order of the precision
of the computer used). We also note that this family of embedded methods has in-
tervals of periodicity greater than the well known methods of Numerov and Cash and
Raptis [4]. It can be seen from the theoretical and numerical results that the new
methods are considerably more efficient than the other numerical methods which we
have considered for the numerical solution of the Schrödinger equation.

All computations were carried out on a PC i586 using double precision arithmetics
(16 significant digits accuracy).

Appendix A. Proof of the theorem 3

To calculate the coefficients ak of the family b of the group of methods (11)–(21)
we have applied the above mentioned algorithm to the test equation (4). So, we have
the following formulae:

yn+1 =
(
2−H2)yn − yn−1,

(38)
yn,k,b = yn − ab−kH2[(2−H2)yn − 2yn,k−1,b

]
, k = 1(1)b, yn,0,b = yn.
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The above relationships give

yn,b,b =

[
1−H4

b−1∑
i=0

(
−2H2)i i∏

j=0

aj

]
yn, (39)

or if we use the relationship (25)

yn,b,b =
[
1− ∆bH4]yn, (40)

yn+1 =

[
2−H2 +

H4

12
+

5H6

6
∆b
]
yn − yn−1,

yn+1/2 =

[
3
2
− 5H2

16
− H4

128
+

59H6

59904
+

(
25H6

624
+

295H8

29952

)
∆b
]
yn

−
(

1
2

+
H6

16

)
yn−1,

yn−1/2 =

[
1
2

+
H2

16
+

5H4

384
− 41H6

59904
+

(
5H6

104
− 205H8

29952

)
∆b
]
yn

+

(
1
2

+
H6

16

)
yn−1,

ŷn+1 =

[
2−H2 +

H4

12
− H6

360
− H8

12480
−
(

35H8

936
+
H10

1248

)
∆b
]
yn − yn−1,

ŷn+1/2 =

[
155
128
− 169H2

512
− H4

768
− 13H6

18432
+

823H8

14376960
+

23H10

19169280

+

(
875H8

119808
+

515H10

718848
+

23H12

1916928

)
∆b
]
yn +

(
5
64
− 81H2

256

)
yn−1

−
(

37
128

+
9H2

512

)
yn−2,

ŷn−1/2 =

[
101
128

+
41H2

512
+

5H4

768
+

61H6

92160
− 23H8

319488
− 3H10

2129920

−
(

1295H8

119808
+

71H10

79872
+

3H12

212992

)
∆b
]
yn −

(
5

64
− 81H2

256

)
yn−1

+

(
37

128
+

9H2

512

)
yn−2,

ŷn+1/4 =

[
10425
8192

− 18177H2

131072
− 3097H4

524288
− 373H6

786432

− 811H8

10485760
+

2631H10

545259520
+

45H12

436207616

+

(
− 1225

196608
+

6125H2

13631488
+

1653H4

27262976
+

225H6

218103808

)
H8∆b

]
yn
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+

(
−1209

4096
+

1737H2

65536
− 6561H4

262144

)
yn−1

+

(
185

8192
− 28179H2

131072
− 729H4

524288

)
yn−2,

ŷn−1/4 =

[
5959
8192

+
9985H2

131072
+

9803H4

1572864
+

5587H6

11796480

+
21593H8

283115520
− 23759H10

4907335680
− 45H12

436207616

+

(
3535

589824
− 170047H2

368050176
− 14917H4

245366784
− 225H6

218103808

)
H8∆b

]
yn

−
(
−1209

4096
+

1737H2

65536
− 6561H4

262144

)
yn−1

−
(

185
8192

− 2817H2

131072
− 729H4

524288

)
yn−2.

Using the above relationships (21) becomes:

yn+1 + 2

[
−1 +

H2

2
− H4

24
+
H6

720
− H8

40320
− 119H10

40435200
− H12

29030400

−
(

55H10

67392
+

95H12

2830464
+

H14

2903040

)
∆b
]
yn + yn−1. (41)

Therefore, (5) and (41) give the formula (24) of C(H).
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